
4-1

Reinforcement Learning

Lecture 4

Lecturer: Haim Permuter Scribe: Tal Edvabsky

I. TEMPORAL-DIFFERENCE LEARNING

In the last lecture, we covered Monte-Carlo (MC) Learning. Using MC, we can learn

directly from raw experience without knowing the environment’s dynamics. In this lecture,

we will discuss a similar method called Temporal-Difference (TD) Learning, which is

undoubtedly one of the most important concepts in Reinforcement Learning. Similar to

MC in the sense that it does not require a model, it is a model-free algorithm that also

resembles Dynamic-Programming (DP) in the sense that it updates estimates based on

other learned estimates without waiting for the final outcome. Its similarity to DP is the

largest difference between TD learning and MC learning. In this lecture, we will focus

only on the policy evaluation, i.e., the ”prediction problem”.

II. INCREMENTAL AVERAGE

In this section we will develop a simple but useful mathematical equality between the

current mean µk and the previous mean µk−1:

µk =
1

k

k∑
t=1

xt

=
1

k

(
k−1∑
t=1

xt + xk

)

=
1

k
((k − 1)µk−1 + xk)

= µk−1 +
1

k
(xk − µk−1) .

The final result gives:

µk = µk−1 +
1

k
(xk − µk−1) . (1)



4-2

III. TD(0) PREDICTION

Let’s start with a reminder of the Incremental MC updates:

N(St)← N(St) + 1, (2)

V (St)← V (St) +
1

N(St)
(Gt − V (St)). (3)

Note that Eq. (3) is dependent on the formula developed in Eq. (1). In a non-stationary

problem, we can substitute the term 1
N(St)

with α and Eq. (3) becomes:

V (St)← V (St) + α(Gt − V (St)), (4)

where

Gt =
∞∑
k=0

γkRt+k+1. (5)

In TD(0), we replace the term Gt, which is the actual return, with the estimated return

Rt+1 + γV (St+1) to get:

V (St)← V (St) + α(Rt+1 + γV (St+1)− V (St)), (6)

where Rt+1 + γV (St+1) is called the ”TD Target” and δt = Rt+1 + γV (St+1) − V (St)

is called the ”TD error”. The equations above combine to create the famous TD(0)

algorithm:

Algorithm 1 TD(0) for estimating vπ
Input: the policy π to be evaluated.

Initialize: V (s) arbitrary.

repeat

Initialize S

For each step of episode:

A← action given by π for S

Take action A and observe R, S ′

V (St)← V (St) + α[Rt+1 + γV (St+1)− V (St)]

S ← S
′

until S is terminal



4-3

IV. ADVANTAGES AND DISADVANTAGES OF TD(0) LEARNING

One can observe from Eq. (6) that TD(0) bootstraps. Bootstrapping means that the

algorithm does not need to wait until the end of an episode to evaluate the value function;

it estimates vπ(s) one step ahead. Let’s summarize and compare the advantages and

disadvantages of TD(0) and MC:

• TD can learn every step while MC must wait until the end of the episode (online

learning).

• In contrast to MC, TD can work in non-terminating environments.

• The TD Target Rt+1 + γV (St+1) is a biased estimate of vπ(s), while in MC, the

return is an unbiased estimate.

• TD Target has much lower variance than the return Gt used in MC Learning.

To understand the differences between MC and TD(0) more clearly and to obtain

better intuition about the performance of this method, we will use a simple example.

Let’s take an MDP with only 2 states: A,B. There is no discount factor (γ = 1), and we

use 8 episodes of experience as follows:

1) A,0,B,0.

2) B,1.

3) B,1.

4) B,1.

5) B,1.

6) B,1.

7) B,0.

What are V (A) and V (B)?

Solution:

• The MC algorithm converges to a solution with minimum mean-squared error

(MMSE):
K∑
k=1

Tk∑
t=1

(Gk
t − V (skt ))

2. (7)

In the example above, using MC we get: V (A) = 0.



4-4

• The TD(0) algorithm converges to a solution of a maximum likelihood Markov

process, which means that it fits the data:

Pr(St+1 = s′|St = s, At = a) =
1

N(s, a)

K∑
k=1

Ts∑
t=1

1(skt , a
k
t , s

k
t+1 = s, a, s′), (8)

r(s, a) = E[Rt|St = s, At = a] =
1

N(s, a)

K∑
k=1

Ts∑
t=1

1(skt , a
k
t = s, a)rkt . (9)

In the example above, using TD(0) we get: V (A) = 6
8
. In both algorithms, V (B) =

6
8
.

V. n-STEP TD PREDICTION

Until now, we discussed about approximating the TD target by looking one step into

the future. What about looking 2 steps into the future? Or 3 steps? Let’s see how the TD

target changes as a function of the number of steps:

• 1 step: G(1)
t = Rt+1 + γV (St+1)

• 2 steps: G(2)
t = Rt+1 + γRt+2 + γ2V (St+2)

• 3 steps: G(3)
t = Rt+1 + γRt+2 + γ2Rt+3 + γ3V (St+3)

• n steps: G(n)
t = Rt+1 + γRt+2 + ...+ γn−1Rt+n + γnV (St+n)

One can observe that when n → ∞, TD becomes MC. In conclusion, the n-step TD

learning algorithm is:

Algorithm 2 TD(0) for estimating vπ with n-step TD prediction
Input: the policy π to be evaluated.

Initialize: V (s) arbitrary.

repeat

Initialize S

For each step of episode:

A← action given by π for S

Take action A and observe R, S ′

V (St)← V (St) + α[G(n)
t − V (St)]

S ← S
′

until S is terminal



4-5

VI. TD(λ)

What is the parameter λ in TD(λ)? Until now, λ has always been equal to zero. In

light of the n-step prediction in Algorithm V, one can deduce another possibility. Perhaps

averaging the n-step returns over different n′s can give a better prediction and a faster

convergence to the value function. For example, one can take 1
2
G(3)+ 1

2
G(5) as a possible

estimated return for all states s ∈ S . Likewise, we can combine information from two

different time steps, and indeed, we can efficiently combine information from all time

steps as follows:

Gλ
t = (1− λ)

∞∑
n=1

λn−1G
(n)
t . (10)

The complete algorithm, which is also called the forward view TD(λ), is:

Algorithm 3 TD(λ) - forward view for estimating vπ
Input: the policy π to be evaluated.

Initialize: V (s) arbitrary.

repeat

Initialize S

For each step of episode:

A← action given by π for S

Take action A and observe R, S ′

V (St)← V (St) + α(Gλ
t − V (St))

S ← S
′

until S is terminal

This algorithm is termed the forward view TD(λ) because it looks into the future to

compute Gλ
t . Similar to MC, it only updates at the end of an episode.

VII. BACKWARD VIEW TD(λ) AND ELIGIBILITY TRACES

While the forward view case provides one with a good understanding of how TD(λ)

works, the backward view is the more practical of the two approaches.In contrast to the



4-6

forward view, it updates online, every step, from incomplete episodes by using eligibility

traces.

A. Eligibility Traces

Eligibility traces are one of the basic mechanisms of RL. For every state s ∈ S , we

keep a scalar Et(s) that follows:

E0(s) = 0, (11)

Et(s) = γλEt−1(s) + 1(St = s). (12)

One can infer from Eq. (12) that:

• γλEt−1(s) assigns credit to the most frequent states.

• 1(St = s) assigns credit to the most recent states.

In proportion to TD error δt and eligibility trace Et(s), we obtain the value function

update:

δt = Rt+1 + γV (St+1)− V (St), (13)

V (s)← V (s) + αδtEt(s). (14)

To summarize, the backward view of TD(λ) is as follows:



4-7

Algorithm 4 TD(λ) - backward view for estimating vπ
Input: the policy π to be evaluated.

Initialize: V (s) arbitrary and E(s) = 0 for all s ∈ S .

repeat

Initialize S

For each step of episode:

A← action given by π for S

Take action A and observe R, S ′

δt ← Rt+1 + γV (St+1)− V (St)

Et(s)← Et(s) + 1

for all s ∈ S :

V (s)← V (s) + αδtEt(s)

Et(s)← γλEt(s)

S ← S
′

until S is terminal

Now let’s consider two special cases of TD(λ):

• λ = 0: Only the current state is updated. The ”frequent” property of eligibility traces

vanishes leaving only the ”recent” property stays. The update becomes equivalent

to the TD(0) update:

Et(s) = 1(St = s), (15)

V (s)← V (s) + αδt. (16)

• λ = 1: Credit is postponed until the end of an episode. Over the course of an

episode, the total update for TD(1) is the same as the total update for MC.


